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Introduction. 
The extent and nature of the ordering of collagen fibers within a tumor has significant 
influence on the process of tumor metastasis: in murine breast tumor models, tumor cells 
move towards blood vessels along fibers that are visible via second harmonic generation 
(SHG), and SHG is exquisitely sensitive to molecular ordering (see below). Tumor cells 
that are moving along SHG-producing (i.e. ordered) collagen fibers move significantly 
faster than those cells that are moving independently of SHG-producing fibers, and the 
extent of SHG-associated tumor cell motility is correlated with metastatic ability of the 
tumor model. Furthermore, the tumor-host interface of murine breast tumor models is 
characterized by radially oriented SHG-producing fibers associated with tumor cells 
invading the surrounding tissue. Lastly, we have shown that treatment of tumors with the 
hormone relaxin, known to alter metastatic ability, alters the collagen ordering as 
detectable by SHG.  
 As locomotion along ordered (SHG-producing) fibers plays a pivotal role in the 
metastatic process, we believe that the process of establishing ordered fibers offers an 
exciting, and currently unexploited, therapeutic target. To take advantage of this, we must 
first learn the cellular players and molecular signals by which collagen ordering is 
induced. Therefore, in this application we propose to determine the key cells and signals 
which influence the ordering of collagen in breast tumors. We will do this by disrupting 
candidate cells and signals in mouse models of breast cancer using SHG-based measures 
of collagen ordering, and metastasis, as readouts. Additionally, we will determine if SHG 
measures of collagen ordering in breast tumors are clinically useful predictors of 
metastatic outcome in breast cancer patient biopsies. 
 This work will have great impact for several reasons. It will provide important 
insight into the molecular and cellular mechanisms by which the collagen in breast 
tumors is ordered, and how this ordering affects metastatic ability. In future work we can 
then exploit these findings by developing and evaluating clinically useful therapeutic 
techniques that will target, for the first time, the ordering of tumor collagen and hence 
attempt to inhibit metastatic ability, improving patient survival. This project will also 
explore whether collagen ordering in the tumor, as quantified by SHG, is a clinically 
viable predictor of metastatic outcome in patient biopsies. A measure of metastatic ability 
is extremely exciting, because there is currently an identified, pressing need for patient 
stratification based upon metastatic risk, in order to minimize ‘over treatment’ of patients 
who only require local therapy after resection, not systemic chemotherapy6. This would 
improve patients’ quality of life. Hence, this project has promise to be clinically relevant 
through two separate paths.  
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Body 
The Statement of Work for this grant proposal is as follows: 
 
Statement of Work 
Specific Aim 1. Determine the role of macrophages in governing collagen ordering 
in tumors, and their mechanism of action. (Months 1-30) 

1a) Modulate the presence of macrophages, then evaluate the effects on collagen 
ordering in tumors, and the effects on metastatic burden. (Months 1-12) Uses 
liposome treatment. ~50 mice. Verifies involvement of macrophages’ in collagen 
ordering in tumors, the exact nature of their particular impact on collagen 
ordering, and the impact on metastasis. 
1b) Manipulate the expression of candidate genes in macrophages, and evaluate 
the effects on collagen ordering in tumors, and the effects on metastatic burden 
(Months 13-30) Uses bone marrow transfer after irradiation. Source animals are 
one of 7 knockouts, for 7 candidate genes. ~50x7= 350 mice. Produces identity of 
key signaling molecules involved in collagen ordering in tumors, the exact nature 
of their particular impact on collagen ordering, and the impact on metastasis. 

Specific Aim 2. Determine the role of Th1, Th2, and Tregs in governing collagen 
ordering in tumors, and their mechanism of action. (Months 31-60) 

2a) Modulate the presence of each cell type, then evaluate the effects on collagen 
ordering in tumors, and the effects on metastatic burden.(Months 31-42) Uses cell 
transfer after antibody treatment. ~3x50=150 mice. Produces identity of key cells 
involved in collagen ordering in tumors, the exact nature of their particular impact 
on collagen ordering, and the impact on metastasis. 
2b) Manipulate the expression of candidate genes in those cell types found 
significant in 2a, and evaluate the effects on collagen ordering in tumors, and the 
effects on metastatic burden (Months 43-60) Uses cell transfer after antibody 
treatment. Source animals are one of 7 knockouts, for 7 candidate genes. 
~3x50x7=1050 mice. Produces identity of key signaling molecules involved in 
collagen ordering in tumors, the exact nature of their particular impact on 
collagen ordering, and the impact on metastasis. 

Specific Aim 3. Determine if collagen ordering is a clinically useful predictor of 
metastatic ability in human tissue samples (Months 1-60). 

1a) In archival specimens from breast tumors we will evaluate the predictive 
relationships between collagen ordering and metastatic outcome (Months 1-60). 
Uses pathology samples of 4 breast tumor types to determine if SHG can predict 
metastatic outcome. ~4x50=200 samples. Produces an assessment of SHG’s 
predictive ability. 

 
 
We have concentrated on developing, proving, and utilizing the molecular tools required 
to manipulate macrophage populations in the E0771 tumor model in order to advance the 
goals of Specific Aim 1, while also establishing the staining and quantification regimen 
required to determine an optical “order index” or OI, which is required to advance the 
goals of all three specific aims. 
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A crucial point to prove early in experimentation is that only mature, phagocytic 

peripheral macrophages are affected by administration of intraorbital clodronate 
liposomes.  Although significant literature exists to indicate that macrophages are heavily 
affected by application of both the free ion and the liposome, potential effects on other 
marrow-derived cell types have been left largely unstudied.  As all cells are capable of 
phagocytosis to some extent, liposome intake by non-macrophage cells could be 
problematic.  Most importantly to this project, potential effects on the marrow-derived 
fibroblast population have not been determined to date.  As we believe that fibroblasts are 
the cells which directly manipulate collagen structure in response to various signals from 
macrophages, the possibility that marrow-derived fibroblasts (anywhere from 7-29% of 
total fibroblast populations in various types of solid carcinoma) would be affected is too 
great to ignore.  Therefore, a series of in vitro experiments were performed to determine 
whether fibroblasts responding to various stimuli present in tumors would be affected by 
clodronate administration. 

 
To this end, HFF-1 human foreskin fibroblasts were treated by exposure to cell 

culture media containing one of the following groups: 
1.  Control (4.5 g/L glucose, 10% FCS, 1% Penicillin/streptomycin) 
2. Simulated bacterial/viral infection response (LPS/IFN-γ) [2] 
3. High M2 macrophage activity (IL-4) [2] 
4. Induction of phagocytosis, suppression of Th1 activity and autoimmunity (IL-10) [3] 
5. Transition to activated/myofibroblast phenotype (TGF-β1, doses) [4] 
6. Highly inflamed/wound response environment (TNF-α, doses) [5] 
7. Tumor-conditioned media (supernatants of Tg1-1 adenocarcinoma culture) 

Briefly, HFF-1 fibroblasts were seeded at 5x104/well in a 96-well plate and exposed to 
culture conditions as desired for 48hr.  For Experiment 1, cells were then exposed to 2um 
red fluorescent carboxylate-modified fluorescent styrene beads for 4hr to induce 
phagocytosis, then exposed for 30min to fluo-4 calcium indicator dye.  Excess beads 
were washed off and fluorescence levels of both red beads and fluo-4 were determined 
via plate reader.  The idea was to get a measure of the extent of phagocytosis (red beads) 
versus the total number of cells present (fluo-4) in response to environmental stimuli.  
For this experiment, RAW264.7 murine macrophages were included to ascertain that the 
treatments were working (by making use of characteristic changes in macrophage 
morphology in response to these stimuli).  See Figure 1 for results. In summary, this 
experiment revealed that fibroblasts will readily phagocytose in conditions representative 
of the tumor environment (thereby taking up liposomes intended for macrophage 
depletion), although at a significantly lower rate than macrophages. Consequently, the 
effect of this phagocytosis on these fibroblasts has to be quantified. This was evaluated 
by culturing and treating fibroblasts as before, then incubating them with a DNA-binding 
dye to ascertain proliferation. See Figure 2 for results. In summary, this experiment 
revealed that while the fibroblasts phagocytose liposomes to a limited extent under 
culture conditions representative of the tumor microenvironment, their proliferation is not 
affected. These two pilot experiments, taken together, indicate that the use of clodronate 
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liposomes is unlikely to affect fibroblasts in the stroma or cause a confound in terms of 
measuring collagen organization in vivo. 
 

 

Figure 1: The effects of a subset of 
culture conditions on  phagocytosis 
relative to cell number, here termed 
‘phagocytic index’, in HFF-1 and 
RAW264.7 cells.  Fibroblasts exposed to 
the classical macrophage activators 
LPS/IFN-γ and the alternative macrophage 
activator IL-4 show no alteration in 
phagocytosis relative to cell number, 
whereas a possible slight decrease in 

phagocytic activity is noticed when the fibroblasts are exposed to tumor-conditioned 
media (n=48 wells all groups).  This is in contrast to results seen in RAW264.7 
macrophages, where LPS/IFN-γ elevates phagocytic activity while curtailing proliferation 
(high phagocytic index) and IL-4 does the converse – both of which are expected 
outcomes based upon macrophage studies.  Interestingly, tumor-conditioned media also 
failed to impact macrophage phagocytic activity relative to control.   
 

 

Figure 2: The proliferation of 
fibroblasts in culture in response to a 
complete set of culture  conditions 
when exposed to PBS-containing 
control liposomes (left bars in each 
pair) and clodronate-containing 
liposomes (right bars).  In no culture 
condition did clodronate liposomes 
significantly affect fibroblast proliferation 
and survival as quantified by DNA-  

binding CyQuant proliferation assay. Although certain signals increased fibroblast 
proliferation as expected, there was no additional effect of liposome treatment on the 
population (p=.5452, n= 16 each group).   
 
To determine if the clodronate liposomes affected our tumor cells, we tested the effects of 
administration of clodronate liposome on the murine breast adenocarcinoma E0771 and 
compared them to the effects on HFF-1 fibroblasts and RAW264.7 macrophages.See 
Figure 3 for results. In summary, there was no effects on E0771 tumor cells nor again on 
cultured fibroblasts, while RAW264.7 macrophages were significantly depleted.  

 

Figure 3: Effect of clodronate liposomes on 
E0771 tumor cells. Although clodronate acts in 
a dose-dependent manner to kill RAW264.7 
macrophages, there is no toxic effect on E0771 
adenocarcinoma or HFF-1 fibroblasts.   
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The next required task was to titrate the amount of clodronate required to completely 
deplete peripheral macrophages without causing damage to the animal model.  
Clodronate liposome administration at a dose indicated by two studies caused extensive 
damage to liver lobes in the form of fibrosis, scarring, and fatty degeneration.  Upon 
titration of the reagent, it was found that .1cc injected every 3 days at a dilution of 1:3 in 
PBS was sufficient to cause nearly complete macrophage depletion in the tumor at 21 
days (see Figure 4).   

 

Figure 4. CL-Lipo treatment reduces 
the number of F4/80 macrophages in 
E0771 tumors in vivo. Depletion was 
quantified by mechanically dissociating 
the tumor and staining the resultant single-
cell suspension with an antibody against 
F4/80, a marker of peripheral phagocytic 
macrophages, followed by flow 
cytometric quantification of the number of 
positive cells and the density of sites 
stained.   

 
Although the number of positive events (cells expressing F4/80) decreases as a result of 
clodronate administration, the density of F4/80 expression (the mean and median 
fluorescence intensity of each positive cell) is unaffected in macrophages (Figures 5 and 
6).  This indicates that clodronate administration truly depletes the number of F4/80 
macrophages within E0771 tumors, and does not simply reduce F4/80 expression in the 
macrophages. Further markers have also been studied for use – literature indicates that 
some TAMs express either MOMA-1 or CD11b in addition to or instead of F4/80, and 
these markers are also being stained for as a regular procedure.  Thus far, depletion has 
affected all of these cohorts of the TAM population to a fairly equal extent (data not 
shown), indicating that clodronate depletion is an acceptable technique to use in this 
context. 

  
Figure 5. CL-LIPO treatment does not 
change the mean expression of F4/80 in 
tumor associated macrophages. 

Figure 6. CL-LIPO treatment does not 
change the mean expression of F4/80 in 
tumor associated macrophages. 
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Now that clodronate liposomes have been established as a usable and reproducible 
method in our laboratory for the depletion of macrophages in mouse models of cancer, 
the effects of this depletion on the ordering of collagen I in the tumor can be studied.  The 
first such experiment is to implant E0771 mammary adenocarcinoma in the female mouse 
mammary fat pad.  This cell line is aggressive and metastatic, making it a good candidate 
for growth studies.  The expectation is that tumors will show impediments to collagen 
organization as determined by SHG imaging when macrophages are absent relative to 
control mice.  This effect is expected to be strong in breast tumors located in breast 
tissue. 
In Figure 9 we report two separate full experiments in which this procedure was done.  
Briefly, mice were anesthetized and implanted with E0771 subcutaneously in the 
mammary fat pad, then administered a dose of the appropriate liposome via retroocular 
injection.  Every third day subsequent, mice were anesthetized and the retroocular 
injection was performed in the opposing orbit to minimize possible damage.  On day 21, 
mice were sacrificed and the tumors were removed, sectioned, and stained for markers of 
interest.  All sections analyzed were mounted on a single large slide to ensure that 
immunofluorescence levels were as comparable as possible. Sample preparation was 
followed by two-photon imaging, in which simultaneous capture of SHG and 
immunofluorescence of collagen I (IF) was accomplished (amongst other markers).  Both 
experiments (n=8 and 7, n=10 and 10) indicate at the very least a trend toward decrease 
in the ratio of SHG to IF (defined as the ordering index or OI) in response to clodronate 
TAM ablation, as posited by our group, and while the run shown in Figure 9 was 
statistically significant (p<0.05) the run shown in Figure 10 had greatly increased noise 
and hence was not.  This result is therefore very exciting to us, and further runs are 
currently being performed to complete this experiment and quantitatively determine the 
decrease in OI due to absence of TAMs. 
 

  
Figure 9. Two experimental measurements of the change in OI (ordering index) 
upon depletion of F4/80 macrophages. Depletion of macrophages was confirmed by 
separate FACS analysis. The depletion in the first experimental run (left) was statistically 
significant (p<0.05) while the second was not. 
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Due to literature implicating certain gene products of macrophages in the establishment 
of distant metastasis in various malignancies, metastatic burden in the liver and lungs was 
quantified by a surgical pathologist in hematoxylin/eosin-stained sections.  Criteria for 
determining a metastasized cancer cell from surrounding normal tissue involve (in part): 
ratio of nucleus to cytoplasm, appearance of nucleus, size, overall cell morphology, and 
presence or absence of abnormal mitotic structures.  When sections from lungs and liver 
from the orthotopic E0771 cohort shown in Figure 9a were analyzed in this manner, it 
was discovered that clodronate-induced macrophage depletion significantly decreases the 
metastatic burden in both organs.  Figure 10 shows this effect.  To further examine this 
effect, both E0771 and MCA38 cell lines are in the process of being stably transfected 
with eGFP to streamline metastasis quantification in the future.  
 

  
Figure 10. Analysis of metastatic output of E0771 tumors grown in the mammary 
fat pad, after macrophage ablation with clodronate liposomes. Both organs showed a 
statistically significant decrease in metastatic output. 
 
Also of interest is the molecular mechanism by which tumor-associated macrophages are 
able to conduct these alterations in collagen ordering in breast and colorectal tumors.  To 
this end, a number of candidate genes are to be evaluated during the course of this 
project.  The candidate genes currently being evaluated are: Tnfα, Tgfβ1, Egf, Il10, and 
Ifnγ.  Knockout mice deficient in these gene products have been purchased from various 
commercial vendors, and breeding colonies started.  Of these gene products, only Tgfβ1 
deficiency is homozygous lethal, and therefore all mice studied for this gene will be 
heterozygotes. 

As we are interested eventually in creating chimeric animals that carry myeloid-
derived cells (i.e. macrophages) deficient in desired gene products via adoptive transfer 
of bone marrow into wildtype animals, and this experimental procedure is exhaustive of 
both time and animal number, we therefore are performing a preliminary experiment in 
which E0771 breast tumors were grown in each strain of knockout mouse, then compared 
these data to data derived from wildtype mice in a preliminary attempt to determine 
possible gene knockout effects.  This set of experiments is currently ongoing in the lab 
with all strains save Egf-/-, which is still being rederived from commercial stocks. 
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The first strain to undergo such experimentation is Tnfα-/-. Mice were separated 
into two groups (PBSL and ClodL, n=9 each) as previously, and were compared to a new 
wildtype cohort also separated into two groups (PBSL and ClodL, n=10 and 9). Tumors 
were measured with Vernier calipers every three days on the long and short axis, then 
volume was calculated assuming the tumor shape as a prolate spheroid.  This 
approximation holds up well until the more advanced time points, when it is possible that 
volume is slightly underestimated due to invasion into the body wall.  At the end of the 
experimental timecourse, tumors, lungs, and livers were resected, prepared, and analyzed 
as already described. As Figure 11 shows, the average tumor volume increased with 
significantly slower dynamics in the two subgroups of the Tnfα-/- cohort, although the 
error bars were quite large in both subgroups (Figure 11a). This was because in each 
subgroup, 7 of 9 animals produced no detectable tumors, while 2 of 9 produced tumors 
which grew in a similar fashion to the 9 tumors in the wildtype cohorts (Figure 11b), 
although we reconfirmed the genotype in each animal a second time. All wildtype mice 
developed tumors, and clodronate injection only slightly impaired tumorigenesis in both 
wildtype and knockout animals.  Figure 11b includes only those mice that developed 
tumors to clarify the growth courses.  From these curves, we see that in animals that 
develop tumors, there is a slight delay in tumorigenesis in wildtype versus Tnfα-/- mice, 
and that within each strain, liposome species has little or no effect on malignant 
progression in terms of total tumor volume.  This experiment is currently being repeated 
in the lab with this and other knockout strains to further elucidate differences in 
tumorigenesis. 

  
Figure 11a. Dynamics of average tumor 
growth in wildtype and Tnfα-/- mice. 
Both cohorts were further subdivided into 
macrophage depleted (ClodL) and 
nondepleted (PBSL) groups.  

Figure 11a. Dynamics of successful 
tumor growth in wildtype and Tnfα-/- 
mice. Only those animals which actually 
grew tumors were selected for this graph. 

 
As part of this work we are also undertaking to add to our arsenal of optical tools 

which we use to study the tumor extracellular matrix. One of these tools is Multiphoton 
Fluorescence Recovery After Photobleaching (MPFRAP), which can measure the 
diffusion coefficient of fluorescent tracers with three-dimensional resolution. Using this 
tool to study the diffusive properties of fluorescent tracers after manipulating cells and 
signals as described above will provide powerful insight into how those cells are defining 
the tumor ECM. However, MPFRAP as it is currently formulated from my original 
invention of the technique (Brown et al Biophys J 1999) does not account for the 
presence of nearby barriers to diffusion, such as the omnipresent cell walls of nearby 
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cells. Hence it is currently entirely unsuited for accurate measurement of diffusion 
coefficients in vivo. We have fixed this, and as it is explained fully in a manuscript 
submitted for publication, I will append that manuscript to this report and summarize 
here: we performed a series of Monte Carlo simulations of MPFRAP experiments and 
determined the range of safe distances at which adjacent barriers of various geometries 
will not affect the accuracy of reported diffusion coefficients. We also derived and tested 
new fitting models for MPFRAP which allow accurate diffusion coefficients to be 
produced even when the barriers to diffusion are significantly closer than previously 
allowed.  
 
Key Research Accomplishments in the first year: 
Fully tested the ability of clodronate liposomes to selectively ablate macrophages in vitro, 
and evaluated their specificity for that cell type. 
 
Used clodronate liposomes to ablate tumor associated macrophages in vivo, verified 
ablation, and found that this ablation affected the collagen ordering index (OI) as well as 
metastatic output. 
 
Began preliminary experiments using knockout animals, determining that ablation of 
TNFa from all host cells (not just macrophages) caused a significant growth delay, and 
that manipulation of the macrophage population does not affect this growth delay. 
 
Enabled MPFRAP to be performed in the vicinity of barriers to diffusion such as nearby 
cell walls, thereby allowing its use in the crowded in vivo environment.  
 
Reportable Outcomes: 
Over the last year I have submitted one manuscript based upon work funded in part by 
this award:   
Sullivan K, Brown E (2010) Diffusion and multi-photon fluorescence recovery after 
photobleaching in bounded systems Manuscript Submitted 
 
 
I have also been invited to produce one book chapter:  
Han X, Perry S, Brown E Second Harmonic Imaging of Tumors. In: Campagnola P, 
Pavone F (eds). Second Harmonic Generation Imaging. Taylor and Francis Press. In 
Preparation. 
 
I have also given four invited talks: 
“Studying the tumor extracellular matrix using nonlinear microscopy” Invited lecture 
presented at the Imaging Science & Technology Rochester Chapter Meeting, Rochester, 
NY, 2010 
 
“Studying cellular and molecular transport in tumors using multiphoton laser-scanning 
microscopy” Invited lecture presented at the University of Virginia, 2010 
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“Diffusion and multi-photon fluorescence recovery after photobleaching in bounded 
systems” Invited lecture presented at the Carl Ludwig Institute of Physiology, University 
of Leipzig, Leipzig, Germany, 2010 
 
“Studying cellular and molecular transport in tumors using multiphoton laser-scanning 
microscopy” Invited lecture presented at Cornell University, 2010 
 
Conclusion 
In conclusion, I believe that I have made significant progress on the goals outlined in my 
Era of Hope Scholar Research Award.  
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Abstract

Multi-photon fluorescence recovery after photobleaching (MP-FRAP) is a laser microscopy tech-

nique used to measure diffusion coefficients of macromolecules in biological systems. The three-

dimensional resolution and superior depth penetration within scattering samples offered by MP-

FRAP make it an important tool for investigating both in vitro and in vivo systems. However,

biological systems frequently confine diffusion within solid barriers, and to date the effect of such

barriers on the measurement of absolute diffusion coefficients via MP-FRAP has not been studied.

We have used Monte Carlo simulations of diffusion and MP-FRAP to understand the effect of bar-

riers of varying geometries and positions relative to the two-photon focal volume. Furthermore, we

supply ranges of barrier positions within which MP-FRAP can confidently be employed to measure

accurate diffusion coefficients. Finally, we produce two new MP-FRAP models that can produce

accurate diffusion coefficients in the presence of a single or parallel infinite plane boundaries po-

sitioned parallel to the optical axis, up to the resolution limit of the multi-photon laser scanning

microscope.

∗ Edward Brown@urmc.rochester.edu
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I. INTRODUCTION

Multiphoton fluorescence recovery after photobleaching (MP-FRAP) is a laser microscopy

technique typically employed to measure diffusion coefficients within biological systems. MP-

FRAP is performed by using a brief, high-intensity, laser flash to generate photobleaching

within a region of interest in a fluorescent sample. The laser is then attenuated and the

region of interest is monitored as still-fluorescent molecules from outside the region diffuse in

to replace the outwardly diffusing bleached molecules. The resulting fluorescence versus time

curve can be fitted to simple analytical formulae to produce the diffusion coefficient of the

mobile fluorophore. In an MP-FRAP experiment, fluorescence and photobleaching are both

generated via multiphoton excitation [1]. The intrinsic spatial confinement of multiphoton

excitation results in a three-dimensionally resolved bleaching/monitoring volume [2], and

allows MP-FRAP to measure three-dimensionally resolved diffusion coefficients within intact

samples. This intrinsic spatial confinement obviates the need for a confocal pinhole and

allows MP-FRAP, as well as the multiphoton laser-scanning microscope upon which it is

based, to probe living tissue down to depths of several hundred microns.

Other techniques employed to measure biological diffusion include fluorescence recovery

after photobleaching (FRAP), FRAP with spatial Fourier analysis (SFA-FRAP), and flu-

orescence correlation spectroscopy (FCS). FRAP is the precursor to MP-FRAP and was

developed in the 1970’s [3–5] to probe transport parameters in biological systems. However,

due to the lack of spatial confinement of the one-photon excitation process, FRAP is limited

to thin samples (< 1 µm) such as the plasma membrane of a cell. The use of spatial Fourier

analysis allows SFA-FRAP [6] to probe diffusion in intact thick tissue, but the technique has

low spatial resolution (∼40 µm) and is limited to the depth penetration of epifluorescence

microscopy (∼50 µm). FCS comes in both one-photon [7, 8] and two-photon [9, 10] vari-

eties and like MP-FRAP it can be used to measure diffusion with high, three-dimensional,

resolution. FCS relies on low fluorophore concentrations (with accompanying low signals)

to produce large population fluctuations within the focal volume, while FRAP relies on high

fluorophore concentrations (with accompanying large signals), making the two techniques

complementary, especially in the difficult optical environment of scattering tissue.

MP-FRAP has been employed to measure absolute diffusion coefficients in the cytoplasm

of cells [1, 11], cartilage [12], optically fabricated gels [13], and blood plasma [14]. In these

2



cases, the volume surrounding the bleached spot was assumed to be “open,” with barriers to

diffusion at infinity. However, many biological systems inherently confine measurements to

regions within solid barriers to diffusion, such as cell walls and organelles, and to-date the

effect of such barriers on the measurement of absolute diffusion coefficients via MP-FRAP

has been neglected.

In the limit that these barriers become extremely close, their impact is relatively straight-

forward to model because they simply change the dimensionality of the system. For example,

it has been shown that an MP-FRAP experiment in microvilli (an extremely narrow tube)

can be modeled by one-dimensional diffusion [15, 16]. However, there has been no analysis

of boundaries to diffusion positioned at intermediate distances, i.e., neither approaching zero

nor at infinity, in order to determine their effects on the reported diffusion coefficient. In

this work we will explore the effects of different barrier geometries on the diffusion coefficient

reported by MP-FRAP, discuss the mechanism by which these barriers affect the reported

diffusion coefficient, and determine the appropriate distances at which the effects of barriers

can be neglected. To do this we will simulate the diffusive spread of a distribution of bleached

molecules in the presence of various barriers to diffusion via Monte Carlo simulation, then

calculate the resultant (two-photon) fluorescence signal, producing an artificial fluorescence

versus time curve. We will then fit many such curves to the classical MP-FRAP equation,

which assumes all barriers are at infinity, and explore how the presence of differing barriers

produces errors in the reported diffusion coefficient. In the case of both a single and parallel

infinite plane boundaries oriented parallel to the optical axis, we will introduce new mod-

els of MP-FRAP that explicitly account for the presence of the boundary/boundaries and

explore how these new models improve the accuracy of the reported diffusion coefficients.

II. MONTE CARLO MODEL OF MP-FRAP

A. Initial fluorophore distribution

The initial concentration distribution of unbleached fluorophore immediately after the

photobleaching pulse, in the limit that the boundaries to diffusion are at infinity, is given

by Brown et. al [1]:

c(x, y, z; t = 0) = coexp
[
−(1/b)qbδb⟨Ibbl(x, y, z)⟩∆t

]
, (1)
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where co is the initial equilibrium concentration of fluorophore, b is the number of photons

absorbed per photobleaching event, qb is the quantum efficiency for b-photon photobleaching,

δb is the multiphoton fluorescence action cross-section of the fluorophore for the order of

excitation required for photobleaching, ⟨Ibbl(x, y, z)⟩ is the time average of the bleach intensity

raised to the bth power, and ∆t is the duration of the bleaching pulse.

The bleach intensity can be approximated as a 3D Gaussian [1]:

⟨Ibbl(x, y, z)⟩ = ⟨Ibbl(0, 0, 0)⟩exp
[
−2b(x2 + y2)

ω2
r

− 2bz2

ω2
z

]
, (2)

where ωr and ωz are the 1/e2 radial and axial dimensions of the two-photon focal volume,

respectively, and ⟨Ibbl(0, 0, 0)⟩ is the time average of the intensity at the two-photon focal

volume center raised to the bth power.

For the purpose of simulation, it is more efficient and effective to follow the bleached

fluorophores [17–19]. Substituting Eq. 2 into Eq. 1, setting b = 2 for a two-photon bleaching

process and co = 1 in anticipation of populating nodes later to determine the amplitude,

and noting that the bleach depth parameter is defined as β ≡ (1/b)qbδb⟨Ibbl(0, 0, 0)⟩∆t, we

find the initial distribution of bleached fluorophore:

cbl(x, y, z; t = 0) = 1− exp

{
−βexp

[
−4(x2 + y2)

ω2
r

− 4z2

ω2
z

]}
. (3)

The bleach depth parameter was chosen to be β = 0.25, a value typical of experimental

MP-FRAP recovery curves [1, 14]. The axial and radial extents of the focal volume were

defined as ωr ≡ 2.6λ/(2πNA) and ωz ≡ 8.8nλ/(2π(NA)2), respectively, where λ is the

wavelength of the excitation laser, n is the index of refraction of the immersion medium, and

NA is the numerical aperture of the lens [20]. Our simulations represent the NA extremes

of typical water-immersion lenses (λ = 780 nm, n = 1.33, NA = 0.5 or 1.2). Space was

discretized into a regular lattice with spacing defined by the expected diffusion properties

(see below). One thousand bleached fluorophores were placed at lattice points using Eq. 3 as

the probability distribution, and with the caveat that no fluorophores were allowed outside

any diffusive barriers introduced into the system. Multiple occupancy on a single node was

permitted.
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B. Diffusion

Diffusion was modeled as a random walk on a three-dimensional lattice [18, 19, 21, 22].

Lattice spacing was determined by the three-dimensional diffusion equation, ⟨r2⟩ = 6Dt,

where the diffusion coefficient, D, was chosen a priori and the time step, t, was chosen to

be approximately 1/1000 of the typical diffusive recovery time for a system with a diffusion

coefficient D and with radial and axial focal volume widths ωr and ωz. For both the low-

and high-NA case, D was chosen as 10µm2/s, approximately the experimental diffusion

coefficient for 2000 kD fluorescein dextran [14]. The corresponding time steps were chosen

as 3.12 µs and 0.376 µs, respectively, and the lattice spacing was calculated to be 13.7 nm

and 4.75 nm, respectively.

C. Boundary conditions

Four boundary models were applied to the diffusing system: a single infinite-plane bound-

ary parallel and perpendicular to the optical axis, two infinite parallel-plane boundaries par-

allel and perpendicular to the optical axis, a hollow infinite-cylinder boundary parallel and

perpendicular to the optical axis, and a hollow spherical boundary. In the context of our

simulations a barrier is considered infinite if a particle cannot cross the barrier at any time

during the simulation. The parallel, cylindrical and spherical boundaries were positioned

symmetrically about the focal volume center, and the positions of all of the boundaries were

defined as fractions of ωr or ωz relative to the focal volume center. All boundaries were

assumed to be perfectly reflecting, i.e., any particle attempting to cross a boundary was

returned to the node it was occupying when the step began. There were no bleached or

unbleached molecules beyond the boundaries at t = 0, or at any subsequent point.

D. MP-FRAP

The fluorescence intensity generated by a weak monitoring beam through an m-photon

process is given by:

F (t) =
δmE

m

∫
⟨Immo(x, y, z)⟩c(x, y, z; t)dxdydz, (4)
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where δm is the multiphoton fluorescence action cross-section of the fluorophore for the order

of excitation required to produce fluorescence, E is the collective efficiency of the detection

system, and m is the number of photons absorbed per excitation event.

We can calculate the fluorescence that would be generated by the bleached fluorophores

were they not bleached by re-expressing the integral as a sum over all bleached fluorophore

locations (xi, yi, zi). We can also let (1/m)Eδm → 1, as it will be divided out when the

fluorescence is normalized for fitting:

Fbl(t) =
∑
i

exp

[
−2b(x2

i + y2i )

ω2
r

− 2bz2i
ω2
z

]
. (5)

To obtain the fluorescence of the unbleached molecules, we first normalize the “fluores-

cence” of the bleached molecules by the pre-bleach fluorescence, Fo, and then subtract from

one: F (t)/Fo = 1 − Fbl(t)/Fo. Fo was determined by first setting t = 0 and β = 0.25 in

Eq. 6, below, truncating the sum to the first ten terms, and solving for F (0)/Fo. This value

was then substituted into F (0)/Fo = 1− Fbl(0)/Fo to deduce Fo from Fbl(0).

The natural variation of a Monte Carlo simulated random walk introduced a small amount

of noise into the resulting F(t) recovery curves. On top of this, we added Poisson distributed

noise to mimic the typical distribution of noise arising from photon counting experiments,

and in an amount typical of in vitro MP-FRAP experiments [1, 14]. Fluorescence recoveries

were terminated when the change in the recovered fluorescence was less than 1% over a time

equivalent to the half-time for complete recovery of a freely diffusing system with diffusion

coefficient D.

Unless otherwise stated, all simulated F(t) curves were fit to the accepted diffusive re-

covery model [1]:

F (t)

Fo

=
∞∑
n=0

(−β)n

n!

1

(1 + n+ 2nt/τD)

1

(1 + n+ 2nt/RτD)1/2
, (6)

where τD is the characteristic diffusion time and R is the square of the ratio of the axial and

radial dimensions of the focal volume. The diffusion coefficient is given by D = ω2
r/8τD.
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III. RESULTS AND DISCUSSION

A. Single plane boundary

We begin our Monte Carlo investigation by introducing a single infinite-plane reflective

boundary parallel to the optical axis, at a range of distances measured in units of ωr relative

to the focal volume center. This models diffusion measurements adjacent to cell walls [23–

25]. We then generate an initial distribution of bleached molecules according to Eq. 1, with

the caveat that no molecules are located beyond the boundary. Then we simulate the random

diffusion of those molecules and produce an F (t) curve as described above. The resultant

curve is fit to Eq. 6, the MP-FRAP formula that assumes all boundaries are at infinity. The

fit (possibly erroneous) diffusion coefficient is then divided by the true diffusion coefficient

(defined a priori in setting up the diffusion random walk), hence errors due to the presence

of a boundary are readily identified by a deviation of this ratio from one. Note that we

ceased our simulations at a boundary location of −0.5ωr because at this point the average

fluorescence from the focal volume in steady state is < 10% of the value of the unobstructed

focal volume.

The resultant data is presented in Fig. 1, and shows that MP-FRAP begins to yield diffu-

sion coefficients significantly different from the input diffusion coefficient (defined hereafter

as when the mean fit diffusion coefficient is more than one standard deviation different from

the input diffusion coefficient) when the boundary passes a distance of 1.3ωr from the focal

volume center for a high NA lens and 1.5ωr for a low NA lens. In each of these cases, the

fit diffusion coefficient, D, becomes significantly different from the input coefficient before

the boundary crosses the focal volume center (0ωr), and the deviation is biphasic, with an

initial underestimation of the diffusion coefficient becoming an overestimation as the bound-

ary crosses the focal volume center. The underestimation of D is most pronounced when

the boundary is in the range of ∼ 0− 1.5ωr, and we hypothesized that this occurs because

the boundary hinders the complete escape of bleached molecules from the focal volume,

forcing a selection of fluorophores to reside longer in the neighborhood of the focal volume,

thereby lengthening the recovery time. We further hypothesized that as a growing portion

of the focal volume becomes “hidden” behind the boundary its characteristic radial size will

become smaller than ωr and fitting of the resultant recovery curves to Eq. 6, which assumes
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FIG. 1. Single boundary parallel the optical axis at a range of positions, presented as fractions of

ωr from the focal volume center, for both a high NA (squares) and low NA (circles) lens. Negative

position values indicate that the boundary has crossed the focal volume center (i.e., more than half

the focal volume is hidden beyond the boundary). Fluorescence recovery curves were generated via

Monte Carlo simulation and fit to the standard MP-FRAP model Eq. 6. Fit diffusion coefficients

were normalized to the input diffusion coefficient, hence an accurate fit produces a ratio of one.

that ωr is the relevant radial length scale, will produce the growing overestimation of D that

becomes apparent as the wall approaches −0.5ωr.

To test these hypotheses we first repeated the series of Monte Carlo simulations, now using

a “destructive” boundary instead of a “reflective” one, such that each bleached molecule that

attempted to cross the boundary was removed from the simulation. As shown in Fig. 2,

removal of the reflected fluorophores eliminated the initial underestimate in D but retained

the later overestimate, suggesting that it is indeed reflection of bleached molecules off of the

boundary and back into the focal volume that lengthens the recovery time and leads to the

initial underestimate of D. One may note that the curves describing the destructive case

begin to upswing while those for the reflective case are still in their initial downturn. At this

point in the reflective case the effect on recovery is dominated by the fluorophores reflecting

back into the region of the focal center, and only as the boundary crosses the focal center

does the effect on shortening ωr begin to overcome particle deflection and reverse the trend,

eventually leading to overestimates of D.

Next, to demonstrate the effect that changing the focal volume dimensions has on fluo-
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FIG. 2. Single “destructive” boundary (black) and “reflective” boundary (blue) parallel to the

optical axis at a range of positions, presented as fractions of ωr from the focal volume center for a

high NA (squares) and low NA (circles) lens. Negative position values indicate that the boundary

has crossed the focal volume center (i.e., more than half the focal volume is hidden beyond the

boundary). Fluorescence recovery curves were generated via Monte Carlo simulation and fit to

the standard MP-FRAP model. Fit diffusion coefficients were normalized to the input diffusion

coefficient, hence an accurate fit produces a ratio of one.

rescence recovery and fitting, we generated data assuming an unobstructed focal volume and

free diffusion, but with ωr reduced to mimic the influence of the barriers reducing the focal

volume as introduced in the previous simulations. We then fit the resulting fluorescence

curves assuming a focal volume with the original ωr. As ωr was reduced to successively

smaller values, the fit diffusion coefficient was increasingly overestimated (data not shown).

This reproduces the trend seen in Fig. 2 and suggests that the overestimate in D is indeed

due solely to a reduction in the bleaching distribution and monitoring volume, and hence

an overestimate of their characteristic size during the fitting process.

Inspection of Fig. 1 also reveals that the low NA curve is more affected by the approach

of the barrier than is the high NA curve, with a more significant initial underestimate of

D. We hypothesized that this is due to the different aspect ratios of the focal volumes

(ωz/ωr = 3.75 for the high NA case and ωz/ωr = 9 for the low NA case). The fastest

route for diffusive escape from an initial bleached distribution will be along the shortest

dimension of the initial distribution, and the higher aspect ratio of the low NA focal volume
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FIG. 3. Single boundary parallel (blue) and perpendicular (red) to the optical axis at a range

of positions, presented as fractions of ωr or ωz, respectively, from the focal volume center for a

high NA (squares) and low NA (circles) lens. Negative position values indicate that the boundary

has crossed the focal volume center (i.e., more than half the focal volume is hidden beyond the

boundary). Fluorescence recovery curves were generated via Monte Carlo simulation and fit to

the standard MP-FRAP model. Fit diffusion coefficients were normalized to the input diffusion

coefficient, hence an accurate fit produces a ratio of one.

means that the diffusive transport in the direction of the approaching barrier is a more

significant contributor to fluorescence recovery for that objective lens than for a higher NA

objective, resulting in a more significant effect of the barrier. To test this hypothesis we

repeated the series of Monte Carlo simulations, but brought in a barrier to diffusion that

was perpendicular to the optical axis. The fastest route for diffusive escape in this geometry

is now parallel to the surface of the approaching barrier and thus unhindered by it, leading

us to predict that the initial underestimate of D should be greatly reduced. Furthermore,

the underestimate of D should now be least significant for the low NA case, as that has the

highest aspect ratio. As shown in Fig. 3, the initial underestimate of D for the boundary

perpendicular to the optical axis is indeed greatly reduced, and is now least significant for

the low NA case, thus confirming our hypothesis. Fig. 3 also reveals that MP-FRAP begins

to yield diffusion coefficients significantly different from the input diffusion when a boundary

perpendicular to the optical axis passes −0.3ωz for a high NA lens. For the low NA case,

the fit diffusion does not deviate significantly for any of the boundary locations assessed.
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To improve the accuracy of the reported diffusion coefficient for the case of a single barrier

to diffusion, we have derived an alternative analytical model of the fluorescence recovery (see

Appendix) that takes into account the presence of the barrier. For a barrier lying parallel

to the optical axis, the new model is:

F (t)

F ′
o

=
1

2

1

erfc(−2u/ωr)

∞∑
n=0

(−β)n

n!

1

(n+ µn(t))

1

(n+ νn(t))1/2

×

{
erfc

[
−2 (1 + n/µn(t))

1/2 u

ωr

]
+ exp

[
− 16n

n+ µn(t)

(
u

ωr

)2
]
erfc

[
−2

(1− n/µn(t))

(1 + n/µn(t))1/2
u

ωr

]}
,

(7)

where µn(t) = 1 + 2nt/τD, νn(t) = 1 + 2nt/RτD, and u is the x or y position of the

bleached molecule distribution center relative to the boundary. For a barrier perpendicular

to the optical axis, the form is the same but µn → νn and ωr → ωz in the exponential and

complementary error functions.

When the new MP-FRAP “single boundary” model is used to fit simulated diffusion

curves produced in the presence of a single barrier parallel to the optical axis, the reported

diffusion coefficients improve dramatically over a wide range of barrier distances (see Fig. 4).

For the case of a barrier perpendicular to the optical axis the reported diffusion coefficients

do not improve significantly over the already generally accurate results using the standard

model (data not shown). Fig. 4 shows that the fit diffusion coefficient remains accurate until

after the boundary has crossed the center of the focal volume (0ωr), assuming the position

of the focal volume with respect to the boundary (u) is known. The fit diffusion coefficient

becomes significantly different from the input diffusion coefficient as a boundary parallel

to the optical axis passes −0.15ωr from the focal volume center for both a high and low

NA lens. If the position of the boundary is not known (i.e., beyond the resolution limit of

the multi-photon laser scanning microscope), we can allow u to be a free fitting parameter.

However, doing so yields erroneous values for the diffusion coefficient for sub-resolution

barrier positions (data not shown).

From these simulations we have determined that when an MP-FRAP experiment is per-

formed adjacent to a single plane barrier to diffusion, and the fluorescence recovery curves

are fit to the standard MP-FRAP model, erroneous diffusion coefficients can be produced

which trend from underestimates of D to overestimates of D as the barrier approaches and

passes the center of the focal volume. This is caused by a hindrance of the ability of bleached
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FIG. 4. Single boundary parallel to the optical axis at a range of positions, presented as fractions

of ωr from the focal volume center for a high NA (squares) and low NA (circles) lens. Negative

position values indicate that the boundary has crossed the focal volume center (i.e., more than half

the focal volume is hidden beyond the boundary). Fluorescence recovery curves were generated via

Monte Carlo simulation and fit to the standard MP-FRAP model (blue) and the new MP-FRAP

model (green) designed for use near a single barrier. Fit diffusion coefficients were normalized to

the input diffusion coefficient, hence an accurate fit produces a ratio of one.

molecules to leave the environment of the focal volume, coupled with a truncation of the

bleach distribution and monitor volume. Using the standard MP-FRAP model, the onset of

these deviations is at a distance of 1.3− 1.5ωr for a barrier parallel to the optical axis and

∼ −0.3ωz for a barrier perpendicular to the optical axis. Due to the high aspect ratio of

two-photon focal volumes, the underestimate is most significant when the barrier is parallel

to the optical axis. Using the new MP-FRAP single boundary model for a barrier parallel

to the optical axis, the initial underestimate is avoided and the point of onset of significant

deviations greatly improves to ∼ −0.15ωr.

Most MP-FRAP experiments are performed using a multiphoton laser scanning mi-

croscopy (MPLSM) platform, with a radial and axial resolution of imaging of ωr and ωz,

respectively [26]. Based upon our results, the user can therefore image the spatial distribu-

tion of fluorophores and avoid MP-FRAP analysis using the standard model (Eq. 6) where

a single barrier parallel to the optical axis is closer than 1.3 − 1.5ωr. For a single barrier

perpendicular to the optical axis, the onset of significant errors in the diffusion coefficient is
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less than the resolution limit of MPLSM, so the conservative user would avoid MP-FRAP

analysis when single barriers are closer than ωz. To improve the range of applicability for

a barrier parallel to the optical axis, the user could perform MP-FRAP analysis using the

new model (Eq. 7), with which accurate diffusion coefficients can be produced down to the

resolution limit, ωr. The user is then limited in applying MP-FRAP only by the resolution

limit of the lens.

B. Parallel plane boundaries

Two infinite parallel-plane reflective boundaries mimic systems such as the regions be-

tween cell walls found in tumor and brain extracellular space [23–25]. To model this system

we introduce parallel-plane barriers symmetrically about the focal volume center, positioned

parallel or perpendicular to the optical axis at a range of distances measured in units of ωr

or ωz relative to the focal volume center. As before, the data is presented as Dfit/Dinput as

a function of boundary location. In each case, Fig. 5 shows that as the boundaries approach

the focal volume, the fit diffusion coefficient begins to drop compared to the input diffusion

coefficient. The fit diffusion coefficient becomes significantly different from the input diffu-

sion coefficient as boundaries parallel to the optical axis pass 1.5ωr from the focal volume

center for a high NA lens and 1.8ωr for a low NA lens. For boundaries perpendicular to

the optical axis, the fit diffusion coefficient becomes statistically significantly different from

the input diffusion coefficient as the boundaries pass 0.5ωz from the focal center for a high

NA lens. For the low NA case, the fit diffusion does not deviate significantly for any of the

boundary locations assessed.

As in the case of the single boundary, the effect on the diffusion coefficient is more

significant for the case of two parallel-plane boundaries running parallel to the optical axis.

As demonstrated previously, this arises because boundaries parallel to the optical axis reduce

the opportunity for diffusing molecules to leave the focal volume via the shorter radial

dimension, which predominantly determines the duration of recovery for a freely diffusing

sample. This is also shown by the opposite behaviors of low and high NA lenses in the two

geometries. When the boundaries are parallel to the optical axis, the low NA lens is the most

affected because radial diffusion is more significant in this high aspect ratio focal volume.

Conversely, when the boundaries are perpendicular to the optical axis, the low NA lens is
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FIG. 5. Two parallel boundaries parallel (blue) or perpendicular (red) to the optical axis at a

range of positions symmetric about the focal volume center and presented as fractions of ωr or ωz

for a high NA (squares) and low NA (circles) lens. Fluorescence recovery curves were generated

through Monte Carlo simulation and fit to the standard MP-FRAP model. Fit diffusion coefficients

were normalized to the input diffusion coefficient, hence an accurate fit produces a ratio of one.

Dashed lines mark the limit of 2D diffusion as indicated by generating data with the 2D MP-FRAP

recovery equation and fitting it to the 3D MP-FRAP recovery equation. For data points marked

with an asterisk (*), the accurate diffusion coefficient was recovered when the data was fit with

the 2D limited MP-FRAP model.

the least affected, for the same reason. Unlike the single boundary case, however, as the

boundaries significantly reduce the focal volume, the diffusion coefficient does not rise but

levels off. The characteristic length of the focal volume is reduced in the direction normal to

the plane surfaces, suggesting that the characteristic recovery time should become shorter,

as in the single boundary case. However, as the distance between the planes approaches

zero, diffusion is effectively confined to two dimensions, and this effect dominates.

By letting ωz → ∞ in Eq. 6 we obtain a two-dimensional form of the MP-FRAP model,

valid in the limit of a 2D system perpendicular to the optical axis, and which is identical to

the original one-photon FRAP model [3]:

F (t)

Fo

=
∞∑
n=0

(−β)n

n!

1

1 + n+ 2nt/τD
. (8)

By generating data using this 2D formula and then fitting the data to the 3D model we find

that in the limit of 2D diffusion the 3D model should yield a value of the diffusion coefficient
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that is 0.84 ± 0.04 times the accepted value for a high NA lens and 0.96 ± 0.03 times the

accepted value for a low NA lens. These limits are plotted in Fig. 5 as the dashed lines

and coincide with the values of the normalized diffusion coefficients at small values of ωz as

determined by the Monte Carlo simulations of MP-FRAP. The asterisks(*) mark data sets

that, when re-fit with the 2D MP-FRAP model given by Eq. 8, recovered the input diffusion

coefficient to within one standard deviation.

To improve the accuracy of the reported diffusion coefficient for the case of parallel

infinite-plane barriers to diffusion, we have derived an alternative analytical model of the

fluorescence recovery (see Appendix) that takes into account the presence of the barriers.

For barriers lying parallel to the optical axis, the new model is:

F (t)

F ′′
o

=
1

3

1

erf(2u/ωr)

∞∑
n=0

(−β)n

n!

1

(n+ µn(t))

1

(n+ νn(t))1/2

{
erf

[
−2 (1 + n/µn(t))

1/2 u

ωr

]

+exp

[
− 16n

n+ µn(t)

(
u

ωr

)2
](

erf

[
−2

(1− n/µn(t))

(1 + n/µn(t))1/2
u

ωr

]
+ erf

[
−2

(1 + 3n/µn(t))

(1 + n/µn(t))1/2
u

ωr

])}
.

(9)

For barriers perpendicular to the optical axis, the form is the same but µn → νn and ωr → ωz

in the exponential and error functions.

When the new MP-FRAP “parallel boundary” model is used to fit simulated diffusion

curves produced assuming the presence of parallel-plane barriers parallel to the optical axis,

the reported diffusion coefficients improve dramatically over a wide range of barrier distances

(see Fig. 6). For the case of a barrier perpendicular to the optical axis the reported diffusion

coefficients do not improve significantly over the already widely accurate results using the

standard model (data not shown). Fig. 6 shows that the fit diffusion coefficient becomes

significantly different from the input diffusion coefficient as boundaries parallel to the optical

axis pass ωr from the focal volume center for both a high and low NA lens. If the position of

the boundary is not known (i.e., beyond the resolution limit of the MPLSM), we can allow

u to be a free fitting parameter. However, doing so yields poor fits for sub-resolution barrier

positions (data not shown).

From these simulations we have determined that when an MP-FRAP experiment is per-

formed between parallel-plane barriers to diffusion, erroneous diffusion coefficients can be

produced that underestimate D. This is caused by a hindrance of the ability of bleached

molecules to leave the environment of the focal volume, coupled with an approach of the
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FIG. 6. Two parallel plane boundaries parallel to the optical axis at a range of positions, presented

as fractions of ωr from the focal volume center for a high NA (squares) and low NA (circles)

lens. Fluorescence recovery curves were generated via Monte Carlo simulation and fit to the

standard MP-FRAP model (blue) and the new MP-FRAP model (green) designed for use near a

single barrier. Fit diffusion coefficients were normalized to the input diffusion coefficient, hence an

accurate fit produces a ratio of one.

system to a two-dimensional geometry. The onset of these deviations is at a distance of

1.5−1.8ωr for barriers parallel to the optical axis, and < 0.1 to ∼ 0.5ωz for barriers perpen-

dicular to the optical axis. Due to the high aspect ratio of two-photon focal volumes, the

underestimate is most significant when the barriers are parallel to the optical axis. Based

upon our results, the user can therefore image the spatial distribution of fluorophores and

avoid MP-FRAP analysis using the standard model (Eq. 6) where barriers parallel to the

optical axis are closer than 1.5−1.8ωr for high and low NA lenses, respectively. For barriers

perpendicular to the optical axis, the onset of significant errors in the diffusion coefficient is

less than the resolution limit of MPLSM, so the conservative user would avoid MP-FRAP

analysis when single barriers are closer than ωz. To improve the range of applicability for

barriers parallel to the optical axis, the user could perform MP-FRAP analysis using the new

model (Eq. 9) enabling accurate diffusion coefficients to be produced down to the resolution

limit, ωr. The user is then limited in applying MP-FRAP only by the resolution limit of the

lens.
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C. Cylindrical boundary

An infinite hollow cylindrical boundary provides an excellent approximation for neuronal

dendrites and axons, in which transport measurements are of interest in neurobiological

research [27, 28]. In our simulations we introduce a cylindrical boundary both parallel and

perpendicular to the optical axis, positioned symmetrically about the focal volume center

at a range of distances measured in units of ωr and ωz. Again, the data is presented

as Dfit/Dinput as a function of boundary location. As with the case of the parallel-plane

boundaries, Fig. 7 shows that as the boundaries approach the focal volume, the fit diffusion

coefficient begins to drop compared to the input diffusion coefficient, and these effects occur

at larger values of ωr for the case of a cylindrical boundary parallel to the optical axis than

for corresponding values of ωz in the perpendicular case. Specifically, the diffusion coefficient

becomes significantly lower than the input diffusion coefficient as the radius of a cylinder

parallel to the optical axis becomes smaller than 1.8ωr for a high NA lens and 2ωr for a low

NA lens. The diffusion coefficient becomes statistically significantly lower than the input

diffusion coefficient as the radius of a cylinder perpendicular to the optical axis becomes

smaller than 0.7ωz for a high NA lens and 0.3ωz for a low NA lens.

Similar to the parallel plane boundaries, we find that when the cylindrical boundary is

sufficiently constricting the diffusion effectively becomes one dimensional. Consequently,

although the size of the available volume decreases there is no overestimate in the apparent

D after the initial underestimate. In the limit of 1D diffusion, the MP-FRAP model can be

altered to account for the dimensional change. By letting ωr → ∞ in Eq. 6 we obtain a 1D

form of the MP-FRAP model for diffusion along the optical axis:

F (t)

Fo

=
∞∑
n=0

(−β)n

n!

1

(1 + n+ 2nt/RτD)1/2
. (10)

By generating data using this 1D model and fitting it to the 3D model we find that in the

limit of 1D diffusion the 3D model should yield a value of the diffusion coefficient that is

0.026 ± 0.001 times the accepted value for a high NA lens and 0.006 ± 0.001 times the

accepted value for a low NA lens. These limits are plotted in Fig. 7 as the dashed lines

and coincide with the values of the normalized diffusion coefficients at small values of ωr

as determined by the Monte Carlo simulations of MP-FRAP. The asterisks(*) mark data

sets that, when re-fit with the 1D standard MP-FRAP model, recovered the input diffusion
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FIG. 7. Cylindrical boundary parallel (blue) and perpendicular (red) to the optical axis at a range

of positions, symmetric about the focal volume center and presented as fractions of ωr or ωz, for a

high NA (squares) and low NA (circles) lens. Fluorescence recovery curves were generated through

Monte Carlo simulation and fit to the standard MP-FRAP model. Fit diffusion coefficients were

normalized to the input diffusion coefficient, hence an accurate fit produces a ratio of one. Dashed

lines mark the limit of 1D diffusion as indicated by generating data with the 1D MP-FRAP recovery

equation and fitting it to the 3D MP-FRAP recovery equation. For data points marked with an

asterisk (*), the accurate diffusion coefficient was recovered when the data was fit with the 1D

limited MP-FRAP model.

coefficient, within one standard deviation.

From these simulations we have determined that when an MP-FRAP experiment is per-

formed within an infinite cylindrical barrier to diffusion, erroneous diffusion coefficients can

be produced that underestimate D. This is caused by a hindrance of the ability of bleached

molecules to leave the environment of the focal volume, coupled with an approach of the sys-

tem to a one-dimensional geometry. The onset of these deviations is at a radius of∼ 1.8−2ωr

for a cylinder parallel to the optical axis, and ∼ 0.3− 0.7ωz for a cylinder perpendicular to

the optical axis. Due to the high aspect ratio of two-photon focal volumes, the underesti-

mate is most significant when the cylindrical barrier is parallel to the optical axis. Based

upon our results, the user can therefore image the spatial distribution of fluorophores and

avoid MP-FRAP where the cylinder parallel to the optical axis has a radius smaller than

∼1.8ωr. A cylinder perpendicular to the optical axis rests in the image plane, and can be
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FIG. 8. Spherical boundary at a range of positions, symmetric about the focal volume center

and presented as fractions of ωr, for a high NA (squares) and low NA (circles) lens. Fluorescence

recovery curves were generated through Monte Carlo simulation and fit to the standard MP-FRAP

model. Fit diffusion coefficients were normalized to the input diffusion coefficient, hence an accurate

fit produces a ratio of one.

imaged with the superior ωr radial resolution of imaging. Hence the radius of the cylinder

can be readily determined down to a resolution significantly smaller than ωz and the user

would avoid cylinders that have a radius smaller than ∼0.7ωz.

D. Spherical boundary

A hollow spherical boundary well approximates a cell body, cell nucleus or dendritic spine

[29–31]. We introduce the spherical boundary symmetrically about the focal volume center

at a range of distances measured in units of ωr. The data is presented as Dfit/Dinput as a

function of boundary location. Fig. 8 shows that the fit diffusion coefficient drops rapidly

relative to the input diffusion coefficient as the boundaries narrow in on the focal volume.

Specifically, the diffusion coefficient becomes significantly lower than the input diffusion

coefficient as the radius of the sphere becomes smaller than 2.75ωr for a high NA lens and

3.75ωr for a low NA lens.

As the sphere becomes sufficiently small, many (and eventually all) of the bleached

molecules will be unable to leave the focal volume. This suggests that the standard 3D

MP-FRAP model (Eq. 6), which assumes free diffusion of the entire fluorophore population,
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may be inappropriate to fit the recovery. The concept of an “immobile fraction” has been

discussed previously [1, 32] in the context of fluorophore populations attached to the extra-

cellular matrix or cell cytoskeleton, and involves an additional fitting parameter to account

for the incomplete recovery caused by a subset of immobile fluorophores. We refit the data

generated for free diffusion within a spherical boundary using standard 3D MP-FRAP with

a fitting parameter for an immobile fraction, but did not achieve significantly more accu-

rate values for the diffusion coefficient (data not shown). This arises because the case of

an immobile fluorophore population and our case of a trapped but mobile population are

only superficially similar. In the case of an immobile fraction, a subset of fluorophores are

permanently (relative to the duration of the experiment) fixed in space. The remaining fluo-

rophores, however, are assumed to diffuse freely. In the case of fluorophores confined within

a spherical boundary, however, while many fluorophores remain within the focal volume they

are always free to move. As the bleached molecules spread from their initial center-heavy

distribution to a more uniform distribution, the fluorescence of the sample changes. The

shape of the recovery is subtly, yet significantly different from the case of immobile fluo-

rophores, and fitting with this added parameter does not significantly improve the resultant

diffusion coefficient.

From these simulations we have determined that when an MP-FRAP experiment is per-

formed within a spherical barrier to diffusion, erroneous diffusion coefficients can be produced

which underestimate D. This is caused by a hindrance of the ability of bleached molecules

to leave the environment of the focal volume. The onset of these deviations is at a radius

of ∼ 2.75 − 3.75ωr and is not improved by fitting with an immobile fraction term. This

radius is significantly greater than the ωr resolution of imaging of MPLSM systems. There-

fore, based upon our results, the user can image the spatial distribution of fluorophores and

avoid MP-FRAP within spherical compartments where the sphere has a radius smaller than

∼ 3.75ωr.

IV. CONCLUSION

In this paper, we have used Monte Carlo simulations to model multiphoton fluorescence

recovery after photobleaching in the presence of reflecting boundaries of various geometries

and sizes. Our results show that MP-FRAP can produce erroneous values of the diffusion
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coefficient even when the boundaries are significantly larger than the focal volume. The

size limit at which the boundaries begin affecting the MP-FRAP measurement varies with

the geometry of the boundary, with the two extremes being a single plane perpendicular to

the optical axis (D becomes erroneous at ∼ −0.3ωz) and a sphere (D becomes erroneous at

3.75ωr). The significance of the error is a function of the aspect ratio of the focal volume (i.e.,

the NA) and the orientation of the barriers, with barriers to diffusion in the radial direction

having the greatest effect. Using our guidelines, a researcher can first image a sample using

two-photon fluorescence, then measure and locate a region with the appropriate dimensions

to allow an accurate measurement of the diffusion coefficient using the appropriate model.

For both a single and paired barriers parallel to the optical axis, we present a new model

of MP-FRAP that can be used to produce accurate diffusion coefficients for boundary dis-

tances much closer than is possible with the standard MP-FRAP model. Measurements of

diffusion via MP-FRAP can now be completed with confidence in an array of in vivo systems

previously believed to be inaccessible.

Appendix

The time-dependent concentration distribution of unbleached fluorophore following the

bleach pulse is given by Brown et. al. [1]. When written in Cartesian coordinates for a

concentration distribution centered at the origin, the expression is:

c(x, y, z; t) = co

∞∑
n=0

(−β)n

n!

1

µn(t)νn(t)1/2
exp

[
−2bn

ω2
r

x2

µn(t)

]
exp

[
−2bn

ω2
r

y2

µn(t)

]
exp

[
−2bn

ω2
z

z2

νn(t)

]
,

(A.1)

where

µn(t) = 1 + 8bnDt/ω2
r , (A.2)

νn(t) = 1 + 8bnDt/ω2
z . (A.3)

For the case of a single infinite plane boundary at the origin we can develop an approx-

imate analytical model by replacing the barrier with the real distribution and an “image”

distribution placed symmetrically about the origin at a positions u and −u, which represent

the distance of the real distribution from the barrier (see Fig. 9). In the region to the right of

the origin, this closely models the behavior of the system: as the distributions spread due to
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FIG. 9. Placement of real and “image” bleached molecule concentration distributions for the case

of a single infinite plane boundary. The overlap of the image distribution in the region of the real

distribution as the two distributions spread (t > 0) mimics the behavior of diffusing molecules

that bounce off the barrier and back into the focal volume. At t = 0, there will be overcounting

of bleached molecules when the two distributions are close to the barrier. This error will remain

small until the image distribution peak approaches the barrier.

diffusion, the overlap of the image distribution with the real distribution mimics the behav-

ior of those fluorophores that bounce off the barrier and back into the space to the right of

the barrier. With this approximation, there is some over counting of the initial fluorophore

population (hatched region in Fig. 9) when the two distributions are oriented close to the

barrier. This “extra” distribution of bleached molecules will evolve over time, producing

an error in the fluorescence as a function of time, and hence in the diffusion coefficient, D.

However, this error remains small until the peak of the image distribution approaches the

origin. As the two distributions perfectly overlap the error in D disappears, then grows

again as the distribution centers continue past one another. The combined concentration

distribution, assuming a barrier parallel to the optical axis in the x-dimension, is given by

c′(x, y, z; t) = (1/2)[c1(x− u, y, z; t) + c2(x+ u, y, z; t)], (A.4)

where c1 and c2 are produced by introducing a coordinate shift into Eq. A.1, and the 1/2

accounts for the fact that we have introduced an image distribution that doubles the true

concentration of fluorophore.

The fluorescence recovery is monitored by a low-intensity laser beam centered on the real
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concentration distribution, and is given by

F ′(t) =
δmE

2m

∫
⟨Immo(x− u, y, z)⟩ c′(x, y, z; t)dxdydz, (A.5)

where δm is the multiphoton fluorescence action cross section, E is the collection efficiency

of the system, m is the number of photons required to produce fluorescence from a single

fluorophore, and ⟨Immo(x− u, y, z)⟩ is the time-average of the bleach intensity raised to the

mth power, given by

⟨Immo(x− u, y, z)⟩ = ⟨Immo(0, 0, 0)⟩ e−(2m/ω2
r)(x−u)2e−(2m/ω2

r)y
2

e−(2m/ω2
z)z

2

. (A.6)

It is important to note that while for the standard model derivation the integral in F (t)

is taken over all space, in the presence of a single barrier the integral along the dimension

interrupted by the barrier (in this case x) is taken only from 0 → ∞.

When Eqs. A.4 and A.6 are substituted into Eq. A.5 and the integral is performed, the

simplified expression for the fluorescence recovery, letting m = b = 2 is:

F ′(t)

F ′
o

=
1

2

1

erfc(−2u/ωr)

∞∑
n=0

(−β)n

n!

1

(n+ µn(t))

1

(n+ νn(t))1/2

×

{
erfc

[
−2 (1 + n/µn(t))

1/2 u

ωr

]
+ exp

[
− 16n

n+ µn(t)

(
u

ωr

)2
]
erfc

[
−2

(1− n/µn(t))

(1 + n/µn(t))1/2
u

ωr

]}
,

(A.7)

where F ′
o is the equilibrium value of the fluorescence before the photobleaching pulse. We

can compare Eq. A.7 with the standard MP-FRAP model (Eq. 6) to gain some insight

into the new form. As noted earlier, the 1/2 arises from our introduction of the image

distribution. The first complementary error function comes from the calculation of F ′
o, which

is evaluated over the limits 0 → ∞. The first part of the summation, appearing on the first

line, is the standard MP-FRAP equation. Finally, the contribution to the fluorescence

recovery is shared between the real concentration distribution, represented by the second

complementary error function, and the image concentration distribution, represented by the

exponential × complementary error function term. In the limit u → ∞,

F ′(t)

F ′
o

=
1

2
+

1

2

∞∑
n=0

(−β)n

n!

1

(n+ µn(t))

1

(n+ νn(t))1/2
. (A.8)

With the image distribution center pushed to negative infinity, the distribution of unbleached

molecules in the region of the focal volume (at positive infinity) is at equilibrium, and

23



contributes a constant 1/2 to the normalized fluorescence. Meanwhile, the real distribution

center translates to infinity with the focal volume, and produces a fluorescence recovery with

the same form as a standard fluorescence recovery. At full recovery (t → ∞), F ′(t)/F ′
o = 1,

as expected.

This derivation can be repeated for a wall perpendicular to the optical axis by introducing

the appropriate coordinate shifts in z, rather than x or y. The result has the same form as

Eq. A.7, but with ωr → ωz and µn(t) → νn(t) in the exponential and complimentary error

functions.

Following similar logic leading to the derivation of the “one boundary” MP-FRAP model,

we can also produce an approximate analytical model for use in the presence of two parallel

infinite-plane boundaries. In this case, we place the real concentration distribution at the

origin, and model two boundaries placed symmetrically about the distribution center (at

u and −u) with an image distribution on the opposite side of each barrier (at −2u and

2u). The concentration distribution for this configuration has three parts, c′′(x, y, z; t) =

(1/3)[c1(x− 2u, y, z, ; t) + c2(x, y, z; t) + c3(x+ 2u, y, z; t)], and the integration to determine

the fluorescence is limited to −u → u along the dimension in which the barriers appear.

The resulting normalized fluorescence recovery, for boundaries parallel to the optical axis,

is given by:

F ′′(t)

F ′′
o

=
1

3

1

erf(2u/ωr)

∞∑
n=0

(−β)n

n!

1

(n+ µn(t))

1

(n+ νn(t))1/2

{
erf

[
−2 (1 + n/µn(t))

1/2 u

ωr

]

+exp

[
− 16n

n+ µn(t)

(
u

ωr

)2
](

erf

[
−2

(1− n/µn(t))

(1 + n/µn(t))1/2
u

ωr

]
+ erf

[
−2

(1 + 3n/µn(t))

(1 + n/µn(t))1/2
u

ωr

])}
.

(A.9)

Similar to the single boundary formula, the 1/3 arises from the introduction of the two

image distributions. The first error function comes from the calculation of F ′′
o , which is

evaluated from −u → u. The standard MP-FRAP model appears again, and is weighted by

contributions from the real distribution, represented by the second error function, and the

image distributions, represented by the two exponential × error function terms. In the limit

u → ∞,

F ′′(t)

F ′′
o

=
2

3
+

1

3

∞∑
n=0

(−β)n

n!

1

(n+ µn(t))

1

(n+ νn(t))1/2
. (A.10)

Here, the image distributions contribute a constant 1/3 each to the normalized fluores-
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cence, while the real distribution recovers as would a standard MP-FRAP curve. At full

recovery (t → ∞), F (t)′′/F ′′
o = 1, as expected.

As with the one boundary model, this derivation can be repeated for walls perpendicular

to the optical axis by introducing the appropriate coordinate shifts in z, rather than x or

y. The result has the same form as Eq. A.9, but with ωr → ωz and µn(t) → νn(t) in the

exponential and error functions.
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